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Modifications of the Weissenberg Rheogoniometer 
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Properties of Molten Polyethylene under Shear. 
Comparison with Tensile Data* 
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synopsis 
Improvements to the Weissenberg rheogoniometer are necessary in order to measure 

the transient rheological properties of polymer melts correctly. The improvements re- 
ported concern the mechanical design, a new heating system, a new normal force mea- 
suring system, and additional equipment for the relaxation test. Reliable short-time 
results require sufficiently stiff torque and normal force springs, and a small radius and 
relatively large angles of the cone-and-plate gap. The behavior of the LDPE melt 
under test is “linear viscoelastic,” if shear rate or total shear are small: The relaxation 
modulus, the stress growth at  the onset of constant shear rate, the stress relaxation after 
cessation of steady shear flow, and, in addition, dynamic shear data (from an oscillation 
viscometer) all show consistent results when correlated by means of formulae from the 
theory of linear viscoelasticity. Shearing in the nonlinear range with constant shear 
rate leads to pronounced maxima of the shear stress p12 and of the first normal stress 
difference pll - p ~ 2  which occur a t  constant total shear, almost independent of shear rate. 
Comparison of shear and tensile data (from extensional rheometer) confirms the Trouton 
relation in the linear-viscoelastic case. In  the nonlinear case, there is a “work soften- 
ing” in shear and a “work hardening” in extension. 

INTRODUCTION 

In  the shear flow of molten polymers, two characteristic features are 
known: (a) the shear stresses are connected with normal stresses, and (b) 
a t  a constant shear rate, the components of the stress tensor are pronounced 
functions of time.’ 

Until recently, there has been only one instrument commercially avail- 
able, the Weissenberg rheogoniometer (WRG), which allows the measure- 
ment of the “transient” shear and normal stresses to be made, at least in 
principle.2 In molten polymers at the onset, of a constant strain rate, 
however, the shear and normal stresses grow so quickly and are so high that 
the records obtained from the commercial version of the WRG are often a 
combination of material and of apparatus responses. 
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This paper contains a brief outline of the modifications to the WRG which 
seem to be necessary and sufficient in order to eliminate the influence 
of the measuring device on the functions recorded. New and, in our opin- 
ion, reliable results concerning the rheological behavior of a low-density 
polyethylene (LDPE) melt in the linear and the nonlinear range of the 
viscoelastic deformation are presented. Finally, a comparison is made 
between the rheological behavior of this material in shear and in extension. 

Part of the modification had to be made in order to fulfill the requirements 
of an international test program of one of the Working Parties of the Macro- 
molecular Division of IUPAC (International Union of Pure and Applied 
Chemistry). The aim of this Working Party is to establish “relationships 
of performance characteristics and basic parameters of  polymer^."^ In the 
special test program, three LDPE specimens are compared with respect to 
(a) molecular characterization, (b) rheological behavior in the molten state, 
and (c) processing and end use proper tie^.^ One of the samples is specimen 
A, which is used in this paper to demonstrate the necessity of the modifica- 
tions made to the WRG. Specimen A is a low-density polyethylene of melt 
flow index5 (MFI) = 1.4 and density (at 20°C) of lz0 = 0.918 g/cm3. All 
data shown in this paper were obtained at a temperature of 150°C. 

THE RHEOGONIOMETER AND GENERAL MODIFICATIONS 

The WRG is in principle a cone-and-plate rotational viscometer which 
operates at constant shear rate +,,. I n  addition to the torque, the normal 
force can be measured which tends to separate the cone and plate when the 
fluid under test has elastic properties. Because the experimental details of 
the instrument are already described in the literature: only a brief summary 
of the vital points of the design need be given here. In this work the Model 
R 12 of the WRG was used. The model number was changed to R 12/15 
after the shaft N of Figure 1 has been replaced by a much thicker one. 

The rotation of the 
gallery G with the lower platen (i.e., the cone) is effected by the rotation of 
the worm wheel WW; and the hollow driving shaft DS. G and DS are 
connected to each other by means of a special diaphram D which is stiff 
with respect to rotation but soft with respect to (small) axial movements. 
Therefore, the axial position of the lower platen LP is given by the position 
of the lower tip of shaft N, which rests in the pan bearing of the leaf spring 
NS. At a constant speed of rotation of the lower platen LP, the specimen S 
is sheared at a constant and uniform shear rate +o; S exerts a torque on the 
upper platen UP which twists the torsion bar TB. A linear displacement 
transducer T1 records this twist as a deflection which, after adequate 
calibration, represents the torque to be measured. The normal force exist- 
ing in the specimen under test acts on the leaf spring NS. The servomotor 
SM lifts the free end of the leaf spring in such a way that the lower platen 
LP is always kept in the same position. At the free end of NS, a second 

Figure 1 is a schematic diagram of the instrument. 
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Fig. 1. Schematic diagram of the Weissenberg Rheogoniometer (WRG). Base B of the 
instrument with column C and torsion head TH. Rotating member: worm W, worm 
wheel WW, driving shaft DS, diaphragm D, gallery G with shaft N, platen adapter PA, 
and lower platen LP. Torsion head TH with torsion bar TB, torsion shaft TS, air, bear- 
ing AB, and upper platen UP. Transducer T1 measures the deflection of radius arm 
RA. Normal force measuring system (commerical version): leaf spring NS, servo- 
motor SM, transducers T2 and T4. HS and HC are two heating systems, transducer 
T3 is used for the gap setting after filling with specimen S. To improve mechanical 
stability, the traverse B‘ with a second column C’ is added to the instrument. Screws 
A‘ clamp the upper end of torsion bar TB to the solid frame formed by B, B’, C, and C’. 

transducer T2 records the deflection representing the normal force F acting 
on the platen LP. 

The shear stress p12 is related to torque T by7 

pi2 = 3T/2rR3 (1) 
and the normal stress difference pll - pZ2 is calculated from the normal force 
F 5ts follows: 

pi1 - pz2 = 2F/rR2 (2) 
where R is the radius of the gap. 

The modifications which had to be made to the commercial version of the 
WRG consisted of improvements in the mechanical design, in the heating 
system, and in the ancillary electronic equipment. 
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For a reliable record of the transient normal force signal, it is necessary 
that the gap geometry be constant. A variation of the distance of the 
platens from each other during the test causes a flow in radial direction with 
the effect that the time-dependent normal stress record is incorrect. Such a 
(‘gap opening” is effected by a movement of each of the two platens. Under 
a thrust of 10 kgf, the upper platen of the original version of the WRG 
moved 10 pm (=a0 microinches), which is considered to be too large 
(see normal force measurement discussion below). Therefore, a second 
column C‘ with traverse B’ was attached to the instrument. The adjust- 
able screw A‘ with additional bolts provide a tight clamping of the upper 
end of the torsion bar TB. Traverse B’ and column C’ can be removed in 
order to fill the gap with the test specimen and to perform the “gap setting” 
(zero positioning). The introduction of B’ and C’ reduces the movement of 
the upper platen under load by more than the factor of 10. 

A further important improvement of the mechanical part of the WRG 
consists of the replacement of the servo method for the normal force 
measuring device by a direct-indicating method. The servo system 
responds too slowly, resulting in (‘overshooting” and a nonstable signal at 
higher forces. In addition, when using the servo, the zero of the normal 
force record is not constant at higher temperatures. The direct-indicating 
method is described in more detail below. For the performance of the 
relaxation test, i.e., a stepwise rotation of the lower platen, an additional 
drive was developed which will be shown below. 

To obtain an improved control of sample temperature, the commercial 
heating system had to be replaced. A variation of the sample temperature 
results in a variation of torque (since the viscosity of the material under test 
is temperature dependent) and, more seriously, in a variation of the ‘(zero’’ 
of the normal-force signal, due to the thermal expansion of the specimen and 
apparatus. The new heating system consists of a main heater HS with a 
water jacket of thermostated temperature to prevent interaction with the 
(slightly varying) room temperature and of a second heater HC which 
compensates the heat flow along the torsion shaft TS. TS is cooled by the 
air of the air bearings AB which center the lower end of the torsion bar TB 
(Fig. 1). Special control circuits provide a constant sample temperature 
within kO.2”C (at 150°C) or better. The thermocouples used are cali- 
brated in situ by a quartz thermometer (Hewlett-Packard, Model 2801). 
The main heater has a glass window for the observation of the free surface 
of the sample in the gap during the test. A nitrogen atmosphere protects 
the sample from being oxidized. 

Figure 2 gives a general view of the rheogoniometer system. The 
mechanical part already described in Figure 1 can be protected against air 
draft by a box K which fits on cover K’. The drive unit consists of the 
synchronous motor DM, the variable transmission DH, and the gear box 
DGB. By means of a magnetic clutch DC, the rotation can be started and 
stopped suddenly. The variable transmission DH adjusts the input speed 
of the gear box in order to impose any desired shear rate to the specimen in a 
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wide shear rate range. For the control of the heaters, thermocouple 
compensators TCC are used together with galvanometers GA and GH. 
The torque and normal-force signals from the transducers T1 and T2 are 
amplified in A and recorded by different recorders depending on shear rate 
and total time of the measurement. It must be mentioned that the original 
transducers and amplifiers of the WRG had to be replaced by more stable 
and more accurate ones in order to  keep the elastic deformation of the 

Fig. 2. Generalview of the rheogoniometer system. In central part of the instrument, 
columns C, C’, the traverse B‘, heater HS, and transducers T1 and T2 of Fig. 1 can be 
seen; K and K’ form a removable housing; T are heavy tables on which the instrument 
and the drive unit are mounted. Synchronous motor DM, variable transmission DH, 
gear box DGB form the drive unit which is connected by magnetic coupling DC to the 
instrument. A is the housing for the amplifiers the output of which can be recorded 
by XY, UV (ultraviolet), MR (multichannel strip-chart), TR (tape) recorders. TCC 
are two compensators for the thermocouple voltages; GA and GH are galvanometers for 
the heat control system. The resistors RR adjust the voltages for the heaters. 

measuring springs of torque and normal force as small as possible (“hard 
apparatus”). 

In measuring polymer melts, the residence time of the material should be 
kept very short in order to minimize reactions in the specimen. On the 
other hand, due to the long relaxation times of polymer melts, a rather long 
waiting period may be required to attain the gap setting and the zero of the 
normal-force signal which corresponds to a stress-free initial state in the 
specimen. To shorten this period, premolded specimens are helpful, with 
dimensions which fit the cone-and-plate geometry of the test gap. 
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MEASUREMENTS IN THE LINEAR VISCOELASTIC RANGE 

At sufficiently low constant shear rates y o ,  polymer melts generate a 
torque which is proportional to the shear rate. In this “linear viscoelastic 
range” the “zero shear viscosity” 770 can be measured directlp; qo is 
defined by 

vo = lim p 1 2 ( t ) / y o  
Y O - K I  
t-ol 

(3) 

In  measuring 90, the growth curve of the shear stress characterizes the 
viscoelastic behavior of the material under test. Giesekuss denotes the 
ratio of the growing stress plz(t)  over the (constant) shear rate yo as “stress- 
ing viscosity’’ : 

dt) = Pl2(t)/?O (4) 

The theory of linear viscoelasticity shows that in the linear viscoelastic 
region with vo(t) (the superscript zero indicates the linear viscoelastic 
range), stress growth, stress relaxation after cessation of steady shear flow, 
and shear relaxation modulus Go ( t )  are interrelated by the equations shown 
in Figure 3, where 70 = lim vo(t) ,  t’ is the time measured from the cessation 

t+- 

Fig. 3. Relation between results of stress growth (“stressing”) and stress relaxation 
experiment: t’ is a new time base for the stress relaxation after cessation of steady flow. 
The linear viscoelastic material functions “stressing viscosity’’ +( t )  and stress relaxation 
modulus GO(t) are explained in text; H ( 7 )  is the relaxation spectrum.” 
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U P  

Steady shear flow situation: 
LP moves proportional with time 
UP rests since equilibrium 
torque is reached 

(a)  

LP 

UP 
Relaxation following cessation 
of steady shear flow: 
LP is fixed 
UP releases due to 
relaxation of torque 

L P  

Consequence of 6 ) :  
Shear rate p is not zero 
for t'>O causing error 

- t  t = r ,  
t'.O 

Fig. 4. Error in flow history caused by the elasticity of the torsion bar (TB of Fig. 1). 

of steady shear flow, and H ( 7 )  denotes the well-known relaxation spec- 
trum." It follows from Figure 3 that the linear viscoelastic behavior can 
be determined in a certain time range in measuring 70 if the stress growth 
represents the time response of the material to the linear increase of the 
shear deformation y(t)  = fot only. However, the apparatus elasticity causes 
an error in y( t ) ,  since only the difference of the movements of the lower and 
the upper platen produces the shear in the specimen. 

Figure 4 gives an example: In  steady shear (a), the lower platen moves 
with constant speed to the right; the upper platen is at  rest because the 
equilibrium torque is achieved, In  (b), at a certain time t' = 0, the lower 
platen is stopped. For t' >0, the material is not at rest due to the untwist- 
ing of the torsion bar which causes a movement of the upper platen to the 
left. This imposes a shear and consequently a shear rate on the melt, even 
for t' >O (c ) .  Similarly, the ideal deformation histories in the stress growth 
and in the relaxation experiments are not achieved because of the elasticity 
of the torque-measuring device. 

Constant Shear Rate (Stress Growth and Relaxation) 

If a pretest indicates that, under the shear rate chosen, the material be- 
havior is in the linear viscoelastic range and the material is chemically 
stabIe throughout the test, the stress relaxation measurement after cessation 
of steady shear flow is preferable to the stress growth measurement for the 
determination of qo(t) for the following reasons: (a) it is more difficult to 
determine t = 0 (start of stress growth) than t' = 0 (start of relaxation). 
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Fig. 5. Relaxation after steady shear flow: influence of gap and torsion bar dimensions 
on (a) true shear rate history and (b) stressing viscosity $ ( t )  caloulated under the as- 
sumption of a stepwise cessation of the steady shear rate yo = 0.001 sec-1 at t’ = 0. 
Specimen A (LDPE, ~ Z O  = 0.918 g/cma; Melt Flow Index6 MFI = 1.4); temperature 
of measurement, 150°C. 

(b) During the increase of the torque, the elastic deformation in the gear box 
and in the connecting shafts causes a lag in the rotation of the lower platen. 
Thus, an additional error arises which does not exist in relaxation since the 
drive is separated from the platen by the magnetic clutch. (c) During 
relaxation, the absence of vibrations from the drive unit gives a less noisy 
trace, and thus the variation of stress with time can be determined accu- 
rately over a longer period than is possible during stress growth. 

Therefore, the following investigation of the influence of the elasticity of 
the torque-measuring device was made in stress relaxation after cessation of 
steady shear flow. Three different arrangements, 4, 5 ,  and 6 (see table 
in Fig. 5), were chosen as combinations of two torsion bars (equal length, 
different diameter) and of two cone angles of the gap geometry. A shear 
rate YO = 0.001 sec-I was applied to the specimen (material A at 150°C) 
until a constant torque was recorded (steady shear flow). At t’ = 0, the 
magnetic clutch stopped the rotation of the lower platen. From the decay 
of the torque and from the elastic spring constant of the upper platen, the 
shear rate was calculated for t’ >O. The 
torsion bar T6 was formerly used by us for the determination of TO of a melt 

The result is shown in Figure 5a. 
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similar to material A? It is remarkable that at t' = 1 sec, i.e., 1 sec after 
cessation of rotation, there is still a shear rate of about 4@-50y0 of the former 
+o acting on the material. Wit.h the very thick torsion bar T11, still 50/, 
of the original +o exists at t' = 1 sec. On the other hand, it seems to be 
desirable to know the time-dependent behavior from 0.1 sec on, because 
there are processing techniques in which the deformation of the polymer 
lasts much less than 1 sec. 

With the usual evaluation of the stress decay signal, the three different 
arrangements deliver stressing viscosities which are shown in Figure 5b. 
The results coincide for long times t. In the transient, short-time region, 
however, there are remarkable differences; the values assigned to $(t) at a 
given value of t increase with increasing stiffness of the arrangement used. 
The filled circles are calculated from dynamic data using a formula which 
Dr. F. R. Schwarzl, T.N.O. Delft, kindly derived for us: 

qo(t)/t FZ (G'(o) + 0.27 G"(2w) + 0.115 G " ( 4 ~ ) ] , , l / ~  (5) 
The relative maximum error of this equation is between f 12y0.11 The 

dynamic data for specimen A were kindly provided by Dr. A. Zosel,25 who 
used an oscillating cylinder viscometer in which the elasticity of the torque- 
measuring device was eliminated. l2 Therefore, the filled circles in Figure 
5b represent values for qo(t) which would be obtained from an ideally stiff 
apparatus. It follows from Figure 5 that the elasticity of the apparatus has 
to be considered if the transient rheological properties are to be reliably 
measured in stress growth or stress relaxation after cessation of steady shear 
flow. 

Stress Relaxation 
For the relaxation test, an additional drive (Fig. 6) was developed to enable 

the lower platen rotation to be started and stopped suddenly. This drive 
consists of a ring system which can be mounted to the base of the apparatus, 
and of a new torsion shaft TS and gallery G which can freely rotate within 
the shaft DS of Figure 1. Around G, a ring RG is mounted which is con- 
nected with two force springs SFC applying a couple. When the springs 
are stressed, a ball in RG is pressed against the stop 52 of the ring system 
shown at the right-hand side of Figure 6. Stop S2 is fixed to the inner ring 
R I  which can freely rotate; the outer ring RO is fixed to the base of the 
WRG. In stressing the springs SFC, the rotation of RI  can be prevented 
by a bolt SS. If SS is released, the inner ring RI rotates through a small 
angle which is preset, being determined by the distance between the stops 
S1 and Sl'. In order to study the movement of the lower platen, two linear 
displacement transducers T can be used which are mounted to G. The 
total angle of rotation (and therefore the total shear strain) can be measured 
in addition optically by mirror M. 

(a) the step function of 
the shear strain has a nonzero rise time; (b) the sudden rotation of the 
lower platen is only partly used for the shear strain step yo and partly for 

Two principal errors arise in the relaxation test: 
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Fig. 6. Additional equipment for the shear relaxation test. The right-hand photo- 
graph is a view from the top of the ring system which is mounted to the WRG in the left- 
hand picture. Column C’ of Fig. 1 and Fig. 2 is removed and the heater is opened in 
order that the two platens forming the cone-and-plate gap can be seen. Torsion shaft 
TS with gallery G and ring RG, RI  inner, RO outer ring with stops S1, Sl’, S2, and SS. 
Linear displacement transducer T, coil spring SFC, connection FC to a second (invisible) 
coil spring; both coil springs exert a couple on G. Mirror M is mounted to G. 

Fig. 7. Time-dependent deflection of the lower platen LP and the upper platen UP 
in the relaxation test using the equipment of Fig. 6, with torsion bar T8 (58 mm long, 
8.90 mm diameter) and a gap of 72 mm diameter and a = 4 degrees. Material A, 
150OC; ordinate: deflection of the platens; abscissa: time. 

the twist of the torsion bar which untwists in course of time because of the 
relaxation of the material. Fortunately, very thick torsion bars can be 
used such that, in practice, for t > 0.1 sec these principal errors can be 
neglected. 

The influence of the apparatus elasticity on the stress relaxation modulus 
of material A was investigated using three arrangements of torsion bars and 
gap geometries. No systematic difference in the results? for t > 0.1 sec could 



WEISSENBERG RHEOGONIOMETER MODIFICATION 2887 

be detected. For one of these arrangements with torsion bar T8 (length 58 
mm, diameter 8.90 mm) and a gap of 72 mm diameter and of 4 degrees cone 
angle, the movements of the two platens at  the beginning of the relaxation 
test were studied using a twin-channel electron-beam oscillograph. The 
result is shown in Figure 7. Apparently, the rise time of the lower platen 
movement is about 10 msec. Following a rule-of-thumb of linear visco- 
elasticity, the stress decay for times longer than ten times the rise time 
represents, to a sufficient approximation, the response to an ideal stepwise 
deformation. The trace of the upper platen movement indicates a super- 
imposed oscillation caused by the momentum at the start of the test. 
However, this oscillation is damped rapidly, and reliable data can be taken 
for times t >lo0 msec = 0.1 sec. 

Relations Between Linear Viscoelastic Material Functions 
The relaxations modulus Go(t) of material A at 150°C is shown in Figure 8 

iogether with the dynamic functions G' and G" plotted versus l/w. GO(t) 
was determined in different ways: (a) by direct measurement in the relaxa- 
tion test, i.e., stress relaxation after a stepwise total shear strain yo with yo 

0.1 1 10 100 1000 
I ,  l/Q CsecJ 

Fig. 8. Shear relaxation modulus @(t )  of specimen A determined by different methods: 
(a) measured directly, (b) calculated as the slope of the stressing viscosity $ ( t )  using 
different arrangements, compare Fig. 5, and (c) calculated from storage and loss moduli 
usingeq. (6). Test temperature 150°C. 
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<0.5. As has been shown recently' for a melt similar to specimen A, the 
relaxation modulus is independent of YO for yo <0.5; (b) from the deriva- 
tive of the stressing viscosity, Go(t) = drO/dt (compare the equations of Fig. 
3); and (c) from the storage modulus G'(w) and loss modulus G"(w) using 
the formula13 

Go(t) = {G':o) - 0.566 G " ( w / ~ )  + 0.203 G"(o) )OE1,t  (6) 
It follows from Figurr, 8 that the directly measured curve (a) coincides 

perfectly with the one calculated from the dynamic data (c) using eq. (6)  for 
t >0.1 sec. The disadvantage of the direct method (aj is that the modulus 
can be measured only up to t = 50 sec. Moreover, dynamic measurements 
with w <0.01 sec-' are difficult to perform. The slope of the stressing 
viscosity curve (b) allows one to extend the time scale for one more decade 
(up to lo00 sec) and the range of modulus for two more decades. This is a 
consequence of the different stress decay in relaxation after a stepwise shear 
or after cessation of steady shear flow. The difference in stress decay 
follows already from the fact that the two material functions, Go(t) and 
ro((t), are related to the relaxation spectrum H ( T )  in different ways (equa- 
tions of Fig. 3). However, the derivative of the stressing viscosity agrees 
with the shear relaxation modulus only if b ( t )  is measured by means of a 
very stiff device. Even the data from the stiffest arrangement 6) of 
Figure 5 do not give a derivative which agrees with GO(t) for t <0.5 sec. On 
the other hand, it is remarkable that the stressing experiment (stress 
growth or stress relaxation after cessation of steady shear flow), if it is 
performed carefully, does provide not only the zero shear viscosity qo but in 
addition the relaxation modulus GO(t) in the wide range of four decades from 
lo5 to 10 dynes/cm2. 

A second important result following from Figure 8 is that the relations of 
the theory of linear viscoelasticity apply to molten polymers if the total 
deformation, or deformation rate, is sufficiently small. 

MEASUREMENTS IN THE NONLINEAR REGION 

At higher rates of shear, polymer melts show large normal stresses and 
pronounced maxima in the variations of shear stress and normal force with 
time. This was shown first for molten polyethylene in 1955 by Pollett." 

The commercial version of the WRG seems to be quite incapable of 
yielding reliable normal force data for polymer melts. The main reason is 
that in polymer melts (except at very low shear rates), the normal forces are 
so high and grow so quickly that the servo system cannot follow them. In 
consequence, there is a periodic gap opening and a large-amplitude periodic 
variation of the normal force. The latter shows up as a "saw-tooth" trace, 
whose minima are near zero and whose maxima are very high reflecting the 
properties of the measuring system and not of the material. For such 
materials, this normal force system can be used neither for transient nor for 
steady-state measurements. 
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In  this section, a new direct-indicating normal-force measuring system 
is described and the influence of the gap dimensions on the records obtained 
is discussed. Finally, for a wide range of constant shear rates, transient 
shear and normal stress data are given which are believed to represent 
rheological properties of the material under test, uninfluenced by the 
apparatus. 

Normal-Force Measuring System 
The direct indicating system for the measurement of normal forces is 

shown in Figure 9. The 
lower platen LP together with the gallery G rests on the lower tip of shaft N, 
which acts on leaf spring NS at bearing BB. Compared with the springs of 
the former servo system, the active length of the new spring is much smaller 
and the shaft CS (clamped to the base of the WRG) is much longer. 

The slope of the spring at x = a is determined from the measured values 
of the deflection (at x = I )  of a rigid arm A which is made of a thin-walled 
aluminium profile. The outer end of A (at x = I) is attached to the core C 
of a linear displacement transducer T2. The transducer housing is rigidly 
attached to the shaft CS by means of the connection A‘. Thus the elastic 
element NS including the moving indicator C and the fixed reference T2 are 
both connected with the WRG at the same point of the WRG base. This 
type of connection improves the zero-stability of the normal-force measur- 
ing device remarkably. 

Three different normal force springs for different ranges were designed 
in such a way that, for each spring, the maximum load F,, corresponds to a 
deflection s = 1 pm (=40 microinches) at x = a. The corresponding 
values of the deflection f, measured by the transducer at x = 1, are listed in 
Figure 9 together with the dimensions of the springs. It is seen that a 
mechanical amplification of 15 or 30 is obtained. The accuracy of the 
normal force measurement is AFIF,,, 5 0.005. This corresponds to an 
axial movement As = 0.005 pm (-0.2 microinches), which may be caused 
by temperature variations in the specimen or in the rheogoniometer or, 
more probably, by a slight roughness in the bearing BB for which the same 
design was used w in the commercial version of the WRG. 

The deflection of the leaf spring necessarily involves an opening of the 
cone-and-plate gap (1 pm under the maximum load FmaX). With this must 
be associated a radial flow of the material under test. If the normal forces 
grow quickly and the resistance to this radial flow is high, a delay in 
the normal force response will occur. To investigate these effects, normal 
force and shear stress measurements were made at the same shear rate 
using different gap diameters and angles. It was found that, as expected, 
the delay shown by the normal force record increased with increasing gap 
diameter. Accordingly, the influence of cone angle changes was investi- 
gated more fully, using the relatively small gap diameter of 24 mm. 

Figure 10 shows the result of a test series performed at  a shear rate of 10 
sec-’. For these tests, the “hardest” torsion bar (T8 with an 8.9-mm 

The notation corresponds to that of Figure 1. 
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P7 

Fig. 9. Direct-indicating system for measurement of normal forces. Lower platen 
LP of cone-and-plate gap; gallery G, normal force shaft N (compare Fig. 1) which fits 
into bearing BB, oil seal 0s which prevents draft in heater. Shaft CS clamped to the 
WRG base, leaf spring NS. Arm A connects core C of transducer T2 to NS; arm A‘ 
connects CS and the housing T2H of the transducer. The active length a of spring 
NS is very short; the small deflection s a t  x = a is amplified mechanically and measured 
as displacement at x = 1. The table shows the dimensions of the three springs used with 
&mum loads F,, which correspond to a maximum deflection s = 1 pm; b and h are 
the dimensions of the rectangular cross section of NS. 

diameter) and the hardest normal force spring (P6, see Fig. 9) were used. 
The normal forces F and the torques T of Figure 10 are multiplied by 
factors occurring in eqs. (2) and (l), respectively. 

The most striking result following from Figure 10 is the remarkable 
influence of cone angle a on the time dependence of the normal force signal, 
indicating that with the “usual” cone angles (4 degrees and smaller) the 
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Fig. 10. Normal force F (top) and torque T (bottom) as a function of time a t  constant 
shear rate +O = 10 sec-1: specimen A a t  150°C. The tests were performed with a gap 
diameter of 24 mm and different “cone angles” a (angle between the flat platen and the 
cone forming the gap). In these graphs, F and T are multiplied by factors which occur 
in eqs. ( 2 )  and (l), respectively. 

test result reflect both material and apparatus properties. Only the records 
for a = 6, 8, and 10 degrees coincide within the reproducibility of the 
measurement. Consequently, only these normal force curves can be 
attributed to the normal stress difference pll - pz2. The curves of the 
torque are not influenced by cone angle a within the range of a used, except 
for the case a = 2 degrees, where the slowly decreasing part of the curve 
after the maximum is more nearly horizontal than for the other cone angles. 

Because of the results of Figure 10, a cone angle of a = S degrees, and a 
gap diameter of 24 mm were chosen as the “standard gap” for the following 
experiments which were performed with constant shear rates ranging from 
0.01 to 50 sec-l. 

Influence of Shear Rate on Time Dependence of Shear Stress and 
First Normal Stress Difference 

The records of Figure 10 for a! = 6-10 degrees indicate pronounced 
maxima in the first normal stress difference pll - p22 and in the shear stress 
p1z as well. Beyond the maxima, both functions decrease steadily, and 
therefore the questions arise whether an equilibrium state of stress, or, in 
other words, a steady state of flow, really does exist and, if it does, how long 
the material must be sheared in order to achieve this steady-state flow. 
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Fig. 11. Shear stress p12 and first normal stress difference pll - p22 as a function of time 
(linear time scale) measured at a shear rate of q0 = 10 sec-1 at a temperature of 150°C. 
Standard gap (24 mm diameter, cone angle CY = 8 degrees), materia1.A. 

For material A, the answer is given in Figure 11, where the two functions 
are shown over a longer time scale. The test from which these results were 
taken was performed with the same shear rate +o = 10 sec-' using the 
standard gap, but the shear action lasted much longer than during the tests 
of Figure 10. In  Figure 11, the maxima seem to be more pronounced since 
especially the normal stress curve decreases much more than in Figure 10 
until the horizontal part of the curve is achieved at a total duration of shear 
of about 300-400 sec. The maxima are built up quickly atr the very 
beginning of the shear action followed by a stress decrease which lasts a 
remarkably long time until the equilibrium stress corresponding to the 
steady state is reached. 

The details of the transient functions can be seen more clearly especially 
in the short-time region if a logarithmic scale is used (Fig. 12). Here, 
the curves for +O = 10 sec-l are replotted, and additional results for 
YO = 1, 2, and 5 sec-l are shown. It follows from Figure 12 that, with 
increasing shear rate, the maxima of p12 and of pll - PZZ increase and 
that these maxima occur at earlier times. It turns out that the maximum 
of each function is connected with a definite constant total shear y = i o t ,  
which is independent of shear rate but is different for shear stress and 
normal stress difference. In fact, the maximum of pll - pn occurs dis- 
tinctly later than the maximum of p12. In  this context, the results of 
Malkin, Yarlykov, and Vinogradov16 must be mentioned; they showed 
that the recoverable part of the total strain (measured in a recovery 
experiment) still increased shortly after the maximum of the shear stress 
was attained. The steeply increasing normal force signal in the decay 
region of the shear stress just after p12,max supports their result, see eq. (7), 
below. 

In  order to discuss the shear rate dependence, it is convenient to define 
certain parameters for the transient behavior observed in a constant shear- 
rate experiment. For this purpose, we shall use the maxima of shear stress 
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Fig. 12. Transient stress functions p l ~  and pll - PZZ for different constant shear 
rates $0 plotted vs. a logarithmic time scale. Standard gap, material A, temperature 
T = 150OC. 6 

plt,max and of normal stress difference (pll - p22)max. In addition, we 
shall use the values of p12 and pll - p22 at the times t = 100,200, and 400 sec 
in order to characterize the approach to steady flow (see Fig. 11). 

Figure 13 gives the parameters selected as a function of shear rate in 
double logarithmic coordinates. At low shear rates, there is no time 
dependence at all: the different curves for the shear stress practically 
coincide and so do the curves for the normal stress difference. At -i0 = 0.01 
sec-l, the slope is less than 1 for p12 and less than 2 for pll - pz2, indicating 
that the material does not behave like a second-order fluid in the whole 
range of $0 studied. For $o > 0.5 sec-1, the values of the maxima increase 
steadily with a slightly decreasing slope, but the values for t = 100,200, and 
400 sec increase less rapidly with increasing f0 and become constant for 
$0 2 8 sec-l. The decrease of p12 €or yo >10 sec-’ and t = 100-400 sec is 
ignored in the further discussion. 

(a) the maximum of the 
state of stress increases steadily with shear rate, whereas (b) the equilibrium 
stress increases much less until (at about Yo = 8 sec-l) a final value is 
achieved which is independent of shear rate. Correspondingly, the ratio 
of the maximum and of the equilibrium values of stress increases: at +O = 
50 sec-l, this ratio is about 10 for pll - p~t .  

Two important results follow from Figure 13: 
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Fig. 13. Parameters of the transient records of shear stress p12 and first normal strem 
difTerence p11 - p a  as functions of shear rate. The parameters represent the maxima 
and the values at times t = 100,200, and 400 sec. CVM gives the shear stress obtained 
from capillary viscometer data using corrections for true shear rate (Weissenberg) and 
true shear stress (Bagley). Material A at 150°C. 

Figure 13 also shows the shear stress as a function of shear rate measured 
in a capillary viscometer using the Weissenberg correction16 for true shear 
rate and Bagley’s plots” for the determination of the true shear stress. It 
turns out that the capillary data coincide sufficiently with the WRG shear 
stress if the shear rate is low enough. At higher shear rates, the capillary 
results lie between the maximum and the equilibrium values of the time- 
dependent shear stress. This result can be understood in the light of 
Figure 11, which shows that the maximum in the shear stress occurs very 
quickly. In  the capillary experiment, a typical fluid element presumably 
attains its maximum shear stress just before entering the die. Its sub- 
sequent behavior, which governs the measured viscosity, thus represents a 
time average of the values of p12 shown in Figure 11. 

It has been mentioned already that, in elastic liquids, the shear flow is 
connected with an elastic, recoverable shear strain Y~ which is related to the 
stress ratio 

r = boll - pZ2) /p lZ  (7) 
such that vR = I?, if the material under test fulfills the equation of the SQ- 

called “neo-Hookean theory of elastic deformation” formulated for solids 
by Rivlin.’* The alternative relation Y~ = 0.5r was derived by Lodgelg 
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Fig. 14. Stress ratio r = (p11 - p ~ z ) / p 1 2  as B function of total shear strain y = &t at 
different shear rates +o. Material A, T = 15OoC, standard gap. 

for the “rubberlike liquid” modella where in this case r denotes the equilib- 
rium value in steady shear flow. 

Figure 14 represents the stress ratio r as a function of the total shear strain 
y = Yet. The onset of the growth of r is approximately equal for all shear 
rates. It is obvious from this figure that the maxima of the curves r(y) are 
located at a. total shear strain of about y = 22, indep,endent of shear rate. 
At high shear rates, the shape of the curves in the neighborhood of the 
maxima is nearly symmetric; at the highest shear rates, the existence of a 
less-pronounced second maximum is indicated. For the discussion of 
Figure 14, it should be observed that the same distance on the abscissa 
belongs to a different instant of time for each curve. 

The maxima of the state of stress and of the stress ratio I’ (related to&e 
recoverable shear strain) indicate that a much greater resistance against 
shear flow does exist during the “prestatioqary region” in the material under 
test than in the steady-state equilibrium. The maxima are evidence of a 
remarkable hindrance which is overcome during the shear deformation. 
There is no breakage of chemical bonds, and the hindrance is built up again 
rather quickly when the deformation rate is ceased: If a second shear 
experiment follows immediately the complete relaxation of shear stress 
and normal stress components after cessation of a first shear experiment 
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with the same shear rate, again the maxima of the recorded functions are 
found comparable in magnitude to the results of the first run. 

COMPARISON OF SHEAR AND TENSILE DATA 

Tensile tests with material A at 150°C were made with an apparatus 
already described.21 The results confirm the general extensional behavior 
of LDPE melts.22 Analogous to eq. (4), a “stressing viscosity in extension” 
/I (t)  is defined by 

where the tensile stresses pll and pZ2 are parallel and normal to the flow 
direction, respectively, and i o  is the constant Hencky strain rate applied to 
the specimen under test. For the linear viscoelastic case; the notation #(t) 
is used, and it was shown recentlyz2 that the relation 

Po@) = 3T0(t) (9) 

is valid for the linear viscoelastic case. Using this factor 3 originally found 
by TroutonlZa the Schwarzl formula, eq. (5)) can be applied to determine the 
linear viscoelastic stressing viscosity in extension from shear dynamic data. 

In Figure 15, the stressing viscosities in shear and in extension are plotted 
as functions of time for a wide range of shear rates (+o = 0.001 to 20 sec-l) 
and elongation rates (io = 0.001 to 1 sec-l). If allowance is made for the 
scatter in the data and for the spread of shear data near 0.1 sec (which, as 
discussed above, is due to apparatus limitations) , then the following conclu- 
sions can be drawn from the data of Figure 15 : 

1. In shear,‘the curve for the linear viscoelastic case, i.e., qo(t) according 
to the Schwarzl formula, eq. (5 ) ,  represents the envelope for the stressing 
viscosities q(t) obtained for all shear rates. With increasing shear rate, q(t) 
deviates earlier from oo(t) and shows a maximum, which occurs at a shear 
strain almost independent of shear rate .i0. 

2. In extension, for small total strains up to e +s 1, the stressing viscosity 
u(t)  follows that for the linear viscoelastic case, po( t )  = 3 qo(t). Then a 
rapid increase follows, the onset of which seems to occur at a constant total 
strain nearly independent of strain rate i0. In contrast to the well-known 
shear thinning or “work softening” in shear, there is a pronounced “work 
hardening” in extension. 

3. Comparing the extensional and the shear behavior, the factor 3 in eq. 
(9) is confirmed for the linear viscoelastic case, i.e., for low strain rates or 
small total strains. The most important result following from Figure 15 is 
that at higher strain rates and larger total strains, the behavior is strikingly 
different, namely, increase in viscosity in extension but decreasing viscosity 
in shear. We note that in both types of deformation the deviation from the 
linear viscoelastic limiting case occurs approximately at a constant magni- 
tude of the deformation, independent of deformation rate. In  comparing 
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Fig. 15. Stressing viscosity in shear ~ ( t )  and in extension ~ ( t )  at different deformation 
rates. Material A, T = 150OC: (0) data calculated from dynamic data using eq. (5); 
(x) capillary viscometer (CVM) data plotted in this graph at times t at which the vis- 
cosity, measured in the CVM, coincides with ~ ( t ) ,  measured in the WRG, for the shear 
rates indicated. 

such data for shear flow and elongational flow, two points should be kept in 
mind: (a) the elongation viscosity p(t)  is calculated from a difference of 
principal stresses, whereas the shear viscosity ~ ( t )  is calculated from a single 
stress component pI2, and not from a difference of principal stresses which 
would involve both pll - pZ2  and p12; and (b) the principal elongation 
ratios, measured from the initial state, have very different time dependences 
in the two types of flow. 

4. For a polymer melt having such pronounced time-dependent proper- 
ties as specimen A, the capillary viscometer data (even when corrected a~ 
described above) yield values for “viscosity” which differ greatly from the 
values of the ratio of shear stress to shear rate obtained under steady shear 
flow conditions. The viscosity data obtained from the capillary viscometer 
fit to a single point of each of the time-dependent shear viscosity curves of 
Figure 15. These points are always located at the right of the maxima 
of the curves. This can be attributed to the pronounced entrance region of 
the LDPE melt in capillary flow, such that a flowing material element is 
stressed most in front of the die entrance. The tremendous time depen- 
dence of the recovery (recoverable shear strain), which is suggested by the 
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steep drop in the stress ratio I' after its maximum (Fig. 14), is presumably 
associated in capillary flow with the pronounced dependence of extrudate 
swell on the 1engt.h of the capillary.' 

FINAL REMARKS 

The final conclusions of the last section summarize the behavior of the 
LDPE sample at 150°C in shear and in extension. With respect to the 
apparatus, the results show that the rheogoniometer can in fact be modified 
to yield reliable data for the time-dependent shear stress and first normal 
stress difference at constant shear rate. It is essential, however, to check 
for the specific material under test whether the dimensions of the gap' 
geometry do yield "geometry independent" results. 

In future, the second normal stress difference, p22 - p33, should be deter- 
mined from the data already obtained and from additional measurements 
in a gap formed by two parallel platens.24 With respect to the experimental 
development, an automatic processing of the WRG data is highly desirable. 

It is a great pleasure for me to thank Messrs. R. Benz and M. Reuther for their help 
in the improvement of the rheogoniometer, for the performance of the tests, and for the 
evaluation of the data. I also like to express my thanks to Dr. F. R. Schwarzl, T.N.O. 
Delft, for communicating eq. (5) to me in advance of publication, to my colleague Dr. 
A. Zosel for the measurement of the dynamic functions G'(o) and G"(o) of material A, 
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